Posts Tagged Optimization

Container Terminal Integrated Planning: Balancing Schedule and Cost

hamburg-2103261_640Containerized sea-freight transportation has grown significantly these recent year, brought an increasing interest on the optimization on container terminal operations. Recent research trends nowadays leads to the integration of container terminal planning. As the container terminal operations itself consists of some intertwined systems, so the integration between them becomes critical.

Operational efficiency and productivity become the key issues in the development of container terminal operations management. As the service provider, container terminals are expected to satisfy the shipping lines schedule related to the vessel arrival and departure time. In other hand, container terminals are also in the urge of maintaining their operational cost in order to compete with other terminal. Somehow at the container terminal, efficiency and productivity will depend a lot on the operational planning held by the terminal manager.

In the daily practice, terminal managers determine the berthing position of each vessel before they arrived at the terminal, due to the information given by the shipping line and also plotted the handling time for the vessel’s operation. This usually called as tactical berth allocation problem. Then, they also determine the certain position for each container in the yard storage area according to some rules adapted in the terminal, this case called tactical yard allocation problem. In order to attain a good state of container terminal operational planning at tactical level, terminal operators are faced with the challenge to both minimize the total violation time of vessel’s arrival and departure time, and minimize the yard transportation distance in a balanced way.

As one of the Indonesian highest-throughput container terminal, PT. Port of Tanjung Priok is experiencing the throughput escalation, particularly from 2015 to 2016, and confront those tactical problems on berth and yard allocation on their daily practice. Unfortunately, they still encounter the violation of vessel arrival and departure time, which undermining the shipping line schedule. This might happening as the result from the possibility of poor operational planning at tactical level and the lack of integration between berth and yard allocation planning.

To cope with this issue, we are trying to get an optimal model for integrated operational planning for ocean going terminal at PT. Port of Tanjung Priok, by adopting a mixed-integer programming model proposed by (Liu et al. 2016). We are developing the model with the consideration of the actual condition on the terminal as the parameter in order to generate a reliable output. The actual information provided by the terminal manager that counts into the consideration of the model are:

  1. Vessel arrival order, vessel length, and number of containers loaded into and discharged from the vessel;
  2. Total length and characteristic of terminal’s quay;
  3. Number of equipment (quay cranes) available in the terminal;
  4. Technical constraints determined by the terminal manager;
  5. Layout and capacity of terminal yard storage area.

Some integer variables are set as the major output, assisted with some other minor variables as the supporting of integration process. As well as the parameter, some constraints also generated based on the actual condition of the terminal. The model then solved with a bi-objective optimization method called ɛ-constraint method, thus we set two objective function which are i) minimize the total violation of actual and scheduled vessel arrival & departure time; and ii) minimize the total yard transportation distance representing the terminal’s operational cost.

In the daily practice of PT. Port of Tanjung Priok within the planning horizon of one week, noted that the current condition conform the small class according to generation by (Liu et al. 2016). Since the class is small-scale, it is possible to get an exact global optimum result from the model. Model will generate the optimal number of the two objective functions and the solution set of major variables generated by the model, which are:

  • the berthing position of each vessel in the planning horizon along the quayside of terminal;
  • number and scenario of equipment will be used at each vessel operation;
  • start and end time of vessel operation, representing the arrival and departure time;
  • storage position of each container in the yard area.

Then as the final result, we transformed the output into the berth and yard allocation map separately, for the ease of the practical use of the terminal. As the model solved with a bi-objective optimization method, output of the model includes the Pareto Frontier that represents the relation between the two objectives function. It resulted that total violation time has a contrast relation with the total yard transportation distance.

Since the model is considering the actual condition of the terminal, the result has high possibility to be applied in the actual practice at PT. Port of Tanjung Priok. Along with that, the Pareto Frontier could be used as decision support tool to determine the set of scenario that suit the terminal’s particular condition, related to the time violation and yard transportation distance. But, regarding to some sort of limitations within the development of the model, this projects is still needs further improvements in order to get more reliable result.

This research is conducted by Rizka and Komarudin

, , ,

No Comments

How to optimize unequal area facility layout to maximize storage

work-1713103_640Facility layout problem, especially with the unequal departmental area (UAFLP), is one of the problems studied in combinatorial optimization and has received the attention of many researchers in the past decade. The goal of UAFLP is to allocate departments into a facility to obtain the most efficient arrangement. The UAFLP study has a final objective to minimize the total cost of material handling between departments.

Competition in today’s business world is inevitable. Increasing the quality of productivity becomes one of the keys to success in facing competition with business management effectively and efficiently. This can happen by maximizing existing resources ie employees, machines, and other facilities. Therefore, the industry needs to be able to optimize production capability and effectiveness to face competitors. The production process becomes the key that needs to be managed effectively to minimize production costs with higher effectiveness.

Facility layout design has a close reinforcement to the size of the physical arrangement of elements in a manufacturing and service system, such as department, machinery, operational tools, and so on. The purpose of the facility layout design is the design with the minimum material handling cost. With proper facility layout, material handling costs can be reduced. In general, material handling contributes about 20-50 percent of the total. Reduction in the company’s operational costs, along with the increased efficiency of the production system becomes a necessity that every industry needs to do.

The problem of facilities layout that is often the researcher’s attention is Unequal Area Facility Layout Problem (UAFLP). Initially, UA-FLP was developed by Armor and Buffa (1963). They explain that there is a rectangular facility with a fixed Width and Height and several (n) departments that need to be allocated to the facility. There are some problems that have not found the optimal solution and require a long computation time. The goal is to reduce non-feasible solutions to reduce the complexity of possible solutions.

This research will develop a mathematical model using Mixed Integer Programming method based on Flexible Bay Structure. Some additional constraint functions will be attempted to be added to the model. Testing is done by comparing the effect of each additional constraint function that has different approaches in cutting the complexity of possible solutions. The comparison result of the combination of the constraint function used indicates which constraint function has a major influence in reducing the computation time of the model.

This research concludes that all simulated problem sets using additional constraints in the model can provide better computation time than before. The effect that occurs can be the value of the solution becomes not optimum or remain optimum. All computational time gives significant improvement.

This research is conducted by Randa Adi Saputra and Komaruddin

, ,

No Comments

Cracking The Truck Dispatch Problem in Open-Pit Mining to Enhance Competitiveness for the Coal Market

Indonesia is a country which has high diversity in energy and mineral resources. As an archipelago with an area of 1,910,931 km2, Indonesia has some of the pre-eminent resources such as petroleum, natural gas, nickel, coal and others. In coal, Indonesia is listed as one of the largest coal producer in the world in 2014. As one of the highest coal producing countries, Indonesia has a reliance on the use of coal for generating electricity or power plant. This is in line with the Indonesian government program in the long-term energy mix of coal has increased the portion of the year 2013 by 24% to 2025 by 33%. But in fact it actually happened inversely where increased production of domestic coal is not followed by a competitive price.

The existence of weakening coal prices, which decreased from year to year, causing the mining sector, especially companies engaged in coal experienced significant negative impacts. One of the most essential where companies are not experiencing growth on corporate profits, but declined.

pit-984037_640

Based on these phenomena is the only way for the company to continue running the business activities through efficiency measures on many things to be able to cover operational costs. One of the efficiencies that can be done such efficiency on the operational side.  As mentioned by Alarie & Gamache (2002) and Ercelebi & Bascetin (2009) the material transportation represents 50 per cent of the operating costs for an open pit mine. Therefore, one of the efficiencies that can be done and has a substantial impact through efficient on truck dispatching problem in the mine area

SEMS was proposing to overcome this problem using simulation and optimization approach to analyze the complexity of truck dispatch problem in open pit mining. This approach uses the look-ahead algorithm and  multi-stage algorithm. Solving the issue focuses on the development of look-ahead methods that will be applied to the truck dispatch problem. Simulation and optimization approach on this issue is run simultaneously with the help of software ProModel as the media to solve the problem. Look-ahead algorithm is an approach to solve the problems of the assignment of the fleet to look ahead what will happen near future with based on previous information system gathered as a reference to decide the scheduling for entities that exist in back of the queue. This research basically to answer the question about where this truck should go now and when it leave this place in order to maximaze amount of coal production. The output of the research is to obtain the best assignment rules for truck dispatch problem with four indicators are, amount of coal production, productivity of loader, productivity truck with block and without block.

Using the model, a significant improvement on amount of production has been achieved to enhance competitiveness coal market.

This research is conducted by Achmad Yusaq Faiz Fadin, Komarudin, and Armand Omar Moeis.

, ,

No Comments

SEMS at ICMS 2011 – Thailand

Two of our researchers, Armand Omar and Aziiz Sutrisno, was presenting at th 4th International Conference on Modelling and Simulation, Phuket, Thailand on April 25-26, 2011. Both of their papers were among 179 paper selected from 512 paper submissions, representing 35% acceptance rate.

Pak Armand presented his research with Pak Komarudin on “Combination of Dummy Department and Wheel Structure Representation for Facility Layout Problems with Empty Space”.

Pak Aziis presented his research with Pak Akhmad on “Systems Dynamics Model for Understanding Contributions of Biodiesel Industry in Indonesia”

, , ,

No Comments

Optimization Workshop 2011

In order to prepare final year students on using optimization software for their final project, SEMS lab is conducting an introductory workshop on optimization, led by Mr. Komarudin. The workshop is held for 3 days.

Read the rest of this entry »

,

No Comments