Archive for category Research Highlights

SEMSLab.id – Our External Website is Live

Please visit our new official website at semslab.id for the latest updated news

 

No Comments

Container Terminal Integrated Planning: Balancing Schedule and Cost

hamburg-2103261_640Containerized sea-freight transportation has grown significantly these recent year, brought an increasing interest on the optimization on container terminal operations. Recent research trends nowadays leads to the integration of container terminal planning. As the container terminal operations itself consists of some intertwined systems, so the integration between them becomes critical.

Operational efficiency and productivity become the key issues in the development of container terminal operations management. As the service provider, container terminals are expected to satisfy the shipping lines schedule related to the vessel arrival and departure time. In other hand, container terminals are also in the urge of maintaining their operational cost in order to compete with other terminal. Somehow at the container terminal, efficiency and productivity will depend a lot on the operational planning held by the terminal manager.

In the daily practice, terminal managers determine the berthing position of each vessel before they arrived at the terminal, due to the information given by the shipping line and also plotted the handling time for the vessel’s operation. This usually called as tactical berth allocation problem. Then, they also determine the certain position for each container in the yard storage area according to some rules adapted in the terminal, this case called tactical yard allocation problem. In order to attain a good state of container terminal operational planning at tactical level, terminal operators are faced with the challenge to both minimize the total violation time of vessel’s arrival and departure time, and minimize the yard transportation distance in a balanced way.

As one of the Indonesian highest-throughput container terminal, PT. Port of Tanjung Priok is experiencing the throughput escalation, particularly from 2015 to 2016, and confront those tactical problems on berth and yard allocation on their daily practice. Unfortunately, they still encounter the violation of vessel arrival and departure time, which undermining the shipping line schedule. This might happening as the result from the possibility of poor operational planning at tactical level and the lack of integration between berth and yard allocation planning.

To cope with this issue, we are trying to get an optimal model for integrated operational planning for ocean going terminal at PT. Port of Tanjung Priok, by adopting a mixed-integer programming model proposed by (Liu et al. 2016). We are developing the model with the consideration of the actual condition on the terminal as the parameter in order to generate a reliable output. The actual information provided by the terminal manager that counts into the consideration of the model are:

  1. Vessel arrival order, vessel length, and number of containers loaded into and discharged from the vessel;
  2. Total length and characteristic of terminal’s quay;
  3. Number of equipment (quay cranes) available in the terminal;
  4. Technical constraints determined by the terminal manager;
  5. Layout and capacity of terminal yard storage area.

Some integer variables are set as the major output, assisted with some other minor variables as the supporting of integration process. As well as the parameter, some constraints also generated based on the actual condition of the terminal. The model then solved with a bi-objective optimization method called ɛ-constraint method, thus we set two objective function which are i) minimize the total violation of actual and scheduled vessel arrival & departure time; and ii) minimize the total yard transportation distance representing the terminal’s operational cost.

In the daily practice of PT. Port of Tanjung Priok within the planning horizon of one week, noted that the current condition conform the small class according to generation by (Liu et al. 2016). Since the class is small-scale, it is possible to get an exact global optimum result from the model. Model will generate the optimal number of the two objective functions and the solution set of major variables generated by the model, which are:

  • the berthing position of each vessel in the planning horizon along the quayside of terminal;
  • number and scenario of equipment will be used at each vessel operation;
  • start and end time of vessel operation, representing the arrival and departure time;
  • storage position of each container in the yard area.

Then as the final result, we transformed the output into the berth and yard allocation map separately, for the ease of the practical use of the terminal. As the model solved with a bi-objective optimization method, output of the model includes the Pareto Frontier that represents the relation between the two objectives function. It resulted that total violation time has a contrast relation with the total yard transportation distance.

Since the model is considering the actual condition of the terminal, the result has high possibility to be applied in the actual practice at PT. Port of Tanjung Priok. Along with that, the Pareto Frontier could be used as decision support tool to determine the set of scenario that suit the terminal’s particular condition, related to the time violation and yard transportation distance. But, regarding to some sort of limitations within the development of the model, this projects is still needs further improvements in order to get more reliable result.

This research is conducted by Rizka and Komarudin

, , ,

No Comments

Group Model Building: Policies for Stronger Shariah Banking in Indonesia

Part of research grants on Study on Shariah Banking Systems in Indonesia, SEMS Lab is conducting a Group Model Building Sessions to construct and confirm a policy model that we develop to analyze the impact of various policy in developing the shariah banking. There will be 2 sessions for developing the model. The first session has been conducted today focusing on policymakers and academics to give an overview of the current state of shariah banking and how to foster their growth compared with the traditional banking systems.

GMM Shariah (1)

We are using system dynamics as the modeling tools, and the first discussion started by playing group games “living loops” for learning the concept of causal loop diagrams. The primary loop of our model is presented and ignited very lively discussions of the what has been done, the future plans and revisions on the relationships of the model variables.

We would like to thank all participants who accepted our invitations and already give us a valuable improvement from our base model.

 

, ,

No Comments

SEMS Play Day!

As part of our research in Serious Simulation Games or SSG, we are testing two of our serious games for public feedback. We called this event SEMS Play Day.

The first game that we are testing is the Project Management Game or PMG, and the second game is MAGPort SSG. PMG has a new redesign board to make it more portable, and MAGPort or Multi-Actor Game for Port Development is our new game that for the first time considering a multi-actor scenario.

SEMS PlayDay 18 (2)

The participants provide very valuable feedbacks into the design and delivery of both games. They all appreciate the use of Serious Simulation Games for Learning.

We will be conducting more PlayDay Event in the future. So be sure to wait for our announcement.

, , ,

No Comments

Reducing Cost of Road Maintenance for the Resources Industry

production-1891426_640Haul road in open mine has short durability. It is because haul road is constructed without asphalt/concrete pavement and passed by big vehicle with heavy load. There is some kind of decreasing quality of haul road such as improper cross section, inadequate roadside drainage, corrugations, potholes, ruts, and loose aggregate. Poor haul road quality will impact on increasing production costs and decreasing mine productivity. Usually open mine use motor grader to maintain the quality of haul road. Way of working of motor grader is to scrap the inadequate haul road surface.

There are some differences among the haul road segments such as characteristic, traffic density, kind of decreasing quality, durability, etc. Therefore, systematically grader route and schedule is needed to minimize the delay of haul road maintenance. Usually grader route and schedule just based on grader’s operator experience. There is no specific approach that can be used in grader route and schedule.

This research focused on grader route and schedule optimization in coal haul road maintenance. Optimization model in this research is designed using Bandit Algorithm. The objective of the optimization model is to minimize the maximum penalty. In this case, penalty is used to describe amount of loss that is caused by maintenance delay on each haul road segment. Grader start from the initial point to a road segment and moves over and over to the other road segment until working hour is over. Determination of he next road segment is based on weight of maintenance delay on each road segment. Greater the weight of the maintenance delay of a road segment, greater the probability of that road segment to be addressed by grader. Grader scraps if the road segment is late maintained and just passes if otherwise. When the working hour is over, grader stops moving and optimization model calculates the objective and records the route as a new solution. The steps are done again as many as have been determined (iteration). Solution with the best objective is chosen as the final solution.

With the probability, grader is not directly addressed to the road segment with the greatest maintenance delay weight to allow for the other road segments to be the next grader destination. This is because short term solutions have effect on long-term solution (whole solution); maybe the best short-term solution is not the best long-term solution. An example in a simpler problem is: we must determine route from city A to city D with 2 possible route that are A-B-D and A-C-D. With the distance between A-B < A-C, A-B is the best first movement. But for the overall movement, maybe A-B-D is not the closest route. Although the distance between A-B < A-C, distance of A-C and C-D can be closer than A-B and B-D.

Optimization model showed a significant cost savings for the mining operations by creating a more effective roads maintenance with reduce cost. With the pressure of low prices in the resources industry, a simple but yet complex optimization can help them stay more competitive.

This research is conducted by Denni and Dr. Komarudin.

,

No Comments