Learning Strategic Sourcing Management through Serious simulation Game

Why bother with uninteresting hours of classroom session, when you can play a game and learn more?

high-bay-408222_960_720Despite the importance of its functionality, research shows that many of the world procurement and purchasing specialist around the world are still having trouble in developing and implementing an effective strategy towards sourcing, according to KMPG International report (2012). Some still perceive the approach in sourcing is to find the lowest cost and ignores the true potential of sourcing.

In the globalization era, the challenge in sourcing has been more complex than before and will continue to rise. Sourcing researcher, Kate Vitasek and alongside many others state that you should view sourcing as a business model with the goal to maximize value. Sourcing is not just merely obtaining products or services at the lowest price, but to obtain them at the right price. By choosing the right business model for your sourcing situation, you can  harness the true potential value sourcing.

Unfortunately, the concept of sourcing model is not yet widely recognized. Although many firms may have or are implementing some of them, the basic knowledge of the sourcing business model development process is still a problem to many sourcing professionals. In order to help the professionals to gain a better understanding of sourcing business model development process, a serious simulation game is presented as a solution.

Serious simulation game has been used in many pedagogical purposes throughout different fields such as supply chain management, business simulation, medical and military. The gaming environment creates an immersive learning medium and therefore is able to improve the learning process of its participants.

By developing a serious simulation game in form of a board game, participants are able to learn the key concepts of sourcing business models and the different impact of each models. Before the game participants can have the chance to develop and choose the best sourcing business model for the situation. The benefit of playing a game is that  participants can know whether they have chosen the right sourcing model.

The game presented in this research proves another example of a pedagogical use of a serious simulation game. Serious simulation game is seen as a suitable learning medium especially for the millennials. The immersive value offered by gaming help learner to stay focus. When learner are involved in the system, there is a better chance that they can understand and remember better. This is also an example of an experiential learning method, where learner can improve their mental models to make better decisions by learning through simulation.

Rizman, Arry, AkhmadThe serious simulation game presented, is developed through the game development guideline set by Richard D. Duke and his colleagues. Keeping in mind that the game must balance the realm of meaning, reality and play as suggested by Casper Hartevald in his “Triadic Game Design” book. The design process also look upon the examples of existing serious simulation game. A group of students from Universitas Indonesia were called as participant respondents of the game. Through the testing of the game, we learn how the game has helped the participants gaining better understanding of the subject.

In conclusion, we have seen how a serious simulation game can help learner to understand complex system which requires an effective learning medium. The game can be used as a learning medium alternatives for professionals and students. By improving their understanding of the system, hopefully they can put the knowledge into practice and solve issues surrounding sourcing strategy.

This research is conducted by M. Rizky Nur Iman, Arry Rahmawan and Akhmad Hidayatno

No Comments

Is Indonesia Ready for New Technology in Reducing CO2 Emission?

smoke-654072_960_720Green house gases (GHG) emission is one of the environmental issues that hasn’t been resolved and continued to increase annually. Carbon dioxide gas is known as the largest contributor for GHG emissions. This environmental issue also happens in Indonesia as a developing country which has focused on sustainable development. In 2020, the total emission of carbon dioxide gas in Indonesia is predicted around 960 million ton if there is no mitigation action.

Developed and developing countries are still looking for the effective technology to answer the emission issue. The carbon dioxide gas emission has to be reduced because if there is no immediate action, the impact is not only effected to the amount of emission itself in air but also to the health issue on human. If the air is heavily contaminated, people who live on that environment will get a health problem.

In the last fifteen years, researchers who focus on cleaner energy are looking for the effective technology which can lower the level of the CO2 emission. Developed countries have landed their first step to mitigate their emission of CO2 gas by using Carbon Capture and Storage (CCS) Technology. This kind of technology could effectively reduce the amount of CO2 emission in large-scale.

Indonesia is aware to the carbon dioxide gas emission issue. There are a few technologies that have been  used to reduce the emission, such as: using the alternative energy which produce cleaner emission than CO2, using a cleaner technology (in transportation), reducing the use of fossil fuel, etc. Carbon capture and storage technology is still new in Indonesia, and there is no enough information and study on it. The researcher in Universitas Indonesia (majoring Industrial Engineering) helps to find the answer to this new technology. Is Indonesia ready for new technology?

The increment of carbon dioxide gas emission keeps increasing annually. Globally, there is a significant difference in incremental of the emission. From 1970 to 2000, the rise of the emission was only 1,3% per year but, from 2000 to 2010, the escalation reaches to 2,2% per year. These circumstances stand on the entire world because the human needs to make a better economy. To fulfill the better economy and life, humans aren’t satisfied. Every single days, there will be a new need from every single human. On that reason, industries grow wild and keep rising every year. Doing their activities, industries occur any kind of emission included the carbon dioxide gas emission, so the increment of carbon dioxide gas emission increases annually.

In developed countries, they have a bold step to mitigate their emission of CO2 gas by using Carbon Capture and Storage (CCS) technology. A post-graduate student from Universitas Indonesia sees the gap in Indonesia. The study and information about CCS, as a new technology to reduce emission, haven’t well developed in Indonesia. Based on the situation, the student tries to do a research of CCS technology implementation in Indonesia using technology assessment method. He spent six months in doing the research in Indonesia.

The objective of the research is to find the criterias and subcriterias for the implementation of carbon capture technology with an adjustment of Indonesia’s condition. Because there is no enough information about the criteria in implementing carbon capture technology, this research could be the opening project for the further research in Indonesia. Through this study, we will seek what the subcriterias are needed to be fulfilled. It will be divided into two main criterias based on economy and environment, and the other supporting criterias are performance and technology innovation.

Data-data on the research used primary and secondary data,. Focus group discussion (FGD) and questionnaire are the main primary data, meanwhile, references from literatures are the secondary data. FGD and questionnaire involved some experts to give their perspectives on this research so the results will be various.

The results suggest the subcriterias that are important in using CCS technology are: the rate of capturing CO2 emission from its technology (for environment criteria) and investment cost of the technology (economy criteria).

The investment cost for the carbon capture technology is big enough, so the implementation itself needs support from the government and other investors. Although there are some challenges in implementing the carbon capture technology, the potential to implement the technology is opened. Indonesia has a big sources for the CO2 emission because there are still many industries using fossil fuel. If the technology applied, it could be a benefit for Indonesia in supporting the sustainable development aligned with the statement (of the government) on reducing CO2 emsision.

This research still needs to be improved, but the results as opening project are promising. Hopefully, there will be other futher  research developed on this field.

This research is conducted by Reinaldo Giovanni and Akhmad Hidayatno

No Comments

Can University Hospital in Indonesia survived in achieving balanced of quality public health service and medical education?

University of Indonesia plays an important role in developing the national health care system by contributing qualified health professionals nationally and internationally. In order to prepare future professional doctors, educators, researchers, and other human resources in medicine and health fields, University of Indonesia is constructing a new education hospital to compliment the overcrowded Cipto Mangunkusumo National Hospital.

RSUI

What actually they should realize is that the hospital is the healthcare facility which operated 24 hours a day, high operational and maintenance cost has become the serious concern to the organization, and this organization should operate independently without the subsidy over the several years. Stakeholders will find a gap between operational cost and the government fundings, and the question is how wide are the gaps and who will cover those gaps?

SEMS, using business and financial modeling, help to obtain a clearer picture of the challenges ahead in managing and operating the new hospital. Using the combination of Activity Based Costing (ABC) and using Process Modeling, we map out the cost drivers structures and put this into simulated balance sheet, income statement, and cash flow. These financial calculations helps us to explain the possible outcomes that could jeoperdize the operations of the new hospital.

This research is conducted by Monica Priscilla, Gamma Rizkina Akbar, Aziiz Sutrisno and Akhmad Hidayatno

No Comments

Cracking The Truck Dispatch Problem in Open-Pit Mining to Enhance Competitiveness for the Coal Market

Indonesia is a country which has high diversity in energy and mineral resources. As an archipelago with an area of 1,910,931 km2, Indonesia has some of the pre-eminent resources such as petroleum, natural gas, nickel, coal and others. In coal, Indonesia is listed as one of the largest coal producer in the world in 2014. As one of the highest coal producing countries, Indonesia has a reliance on the use of coal for generating electricity or power plant. This is in line with the Indonesian government program in the long-term energy mix of coal has increased the portion of the year 2013 by 24% to 2025 by 33%. But in fact it actually happened inversely where increased production of domestic coal is not followed by a competitive price.

The existence of weakening coal prices, which decreased from year to year, causing the mining sector, especially companies engaged in coal experienced significant negative impacts. One of the most essential where companies are not experiencing growth on corporate profits, but declined.

pit-984037_640

Based on these phenomena is the only way for the company to continue running the business activities through efficiency measures on many things to be able to cover operational costs. One of the efficiencies that can be done such efficiency on the operational side.  As mentioned by Alarie & Gamache (2002) and Ercelebi & Bascetin (2009) the material transportation represents 50 per cent of the operating costs for an open pit mine. Therefore, one of the efficiencies that can be done and has a substantial impact through efficient on truck dispatching problem in the mine area

SEMS was proposing to overcome this problem using simulation and optimization approach to analyze the complexity of truck dispatch problem in open pit mining. This approach uses the look-ahead algorithm and  multi-stage algorithm. Solving the issue focuses on the development of look-ahead methods that will be applied to the truck dispatch problem. Simulation and optimization approach on this issue is run simultaneously with the help of software ProModel as the media to solve the problem. Look-ahead algorithm is an approach to solve the problems of the assignment of the fleet to look ahead what will happen near future with based on previous information system gathered as a reference to decide the scheduling for entities that exist in back of the queue. This research basically to answer the question about where this truck should go now and when it leave this place in order to maximaze amount of coal production. The output of the research is to obtain the best assignment rules for truck dispatch problem with four indicators are, amount of coal production, productivity of loader, productivity truck with block and without block.

Using the model, a significant improvement on amount of production has been achieved to enhance competitiveness coal market.

This research is conducted by Achmad Yusaq Faiz Fadin, Komarudin, and Armand Omar Moeis.

, ,

No Comments

Multi-Period Maritime Logistics Planning for the Better Logistics Network Planning

It’s inevitable that the price of commodities in the eastern part of Indonesia is much higher than in the west. The unbalance economic growth between these two parts of Indonesia, might be one of the reason. Hence, the main trade activities happen mostly in the west, especially in Java island which could be called as the center of this country.

freighter-315201_640According to Meeuws and Bahagia, Indonesia as an archipelago country is dependent to maritime logistics on transporting goods and transportation. But unfortunately the performance of logistic in Indonesia is still poor. Also, the cost of logistics in Indonesia is still high. Until 2011, the cost of logistics is equal to 24.64% of Indonesia’s GDP.

Liner shipping company, as the provider of maritime logistics services, is looking for technology for optimizing their cost planning in operating and enhancing their fleets. The purpose of this plan is to make the capacity of their fleets matches the demand of container. The main goal for every company is of course to gain maximum profit. But the high of logistic cost and the unbalance trade activities in Indonesia might be the problem for liner shipping company to achieve that.

In liner shipping there are three different time-horizon levels. There are strategic level, tactical level, and operational level. The strategic level has the longest horizon and it involves determining the optimal fleet. The tactical planning level is done once in the several months and it involves constructing ship schedules. The shortest term decision level is the operational level. It involves determining the optimal allocation of cargo.

Previously there has been a research on Indonesia’s maritime logistic, especially in liner shipping made by Meijer and Van Rijn from Netherland. The purpose of their research is to gain maximum profit by optimizing liner shipping network design in Indonesia. But their research did not consider demand in the future (multi-period planning). Multi-period planning is crucial for liner shipping company in planning and developing the maritime logistics business.

SEMS researchers see this as an opportunity for our research. Therefore we make a research on multi-period liner shipping network design in Indonesia. The purpose is for the liner shipping company to gain maximum profit by optimizing their network design. In doing so, there are given conditions and scenarios in order to acknowledge which scenario suits best for multi-period planning. The outcome of this research is also to design the optimum logistics network which involves, which routes to be used, how many ships have to be allocated, and the cargo allocation.

This Research is conducted by Mellianna Fiannnita Purba, Komarudin and Armand Omar Moeis.

, ,

No Comments