Archive for category Knowledge Area
SEMS Research Highlights 2015: Improving the Soekarno Hatta International Airport Utilization as the Main Gate of Indonesia
Posted by systems in Knowledge Area, News, Optimization, Ports, Logistics and Supply Chain, Research Area, Research Highlights, Technical Area on 02/08/2015
With the steady economic growth for the last ten years in Indonesia has made people mobility across the nation is at all time high. This is why, that most airport in Indonesia is operated more than its capacity. Soekarno Hatta International Airport (SHIA) is currently operated twice than its designed capacity. This problem has strong influence to the level of service of the airport, which next could lead to the decreasing of the passenger’s satisfaction (Yan, Shieh, & Chen, 2002). The challenges of the airport operator are to do further investment and to optimize the utilization of current ability.
Based on a research done by Redaksi Angkasa (2014), the current maximum traffic capacity of SHIA is 72 landing-takeoff traffics per one hour. They found that this still could be improved till 86 landing-takeoff traffics per one hour. Another standing point is more than 40% flights in SHIA is being parked in the remote area. The remote area is basically the aircraft parking area, located far away from the terminal building.
SEMS was trying to solve this problem, because we believe the better service from gated flights could maintain the image of SHIA as the main gate of Indonesia. There are some researches already studied about this topic. Bennel, Mesgarpour, & Potts (2011) have done a research focus on developing an optimization model. The objective of the study is to maximize the number of flights. Another research was done by integrating the runway allocation and gate assignment problem to maximize the number of flights could be accommodated in an airport (Nahry, T., & Y.J., 2013). Additionally, SEMS saw a research opportunity not to focus on operator’s perspective only, but also on the passenger’s perspective such as minimizing flight tardiness and minimizing passenger walking distance in the terminal.
This research is basically focusing on developing an optimization combination model of runway and gate assignment. The output of this research is to generate to most optimal runway and gate schedule concerns on 4 objectives, such as maximizing landing-takeoff traffics, minimizing flight tardiness, minimizing flights being parked in remote area, and minimizing passenger walking distance in airport. The model is done using the Genetic Algorithm Optimization Approach. The Genetic Algorithm it self is a metaheuristics algorithm, functioning to generate the best solution in a certain solution space of a certain problem.
Using the model, a significant reduction on un-gated flight has been achieved which reduce the traveling distance of the passenger.
This research is Conducted by Gede Arya Satya Dharma, Aziiz Sutrisno, Armand Omar Moeis, and Akhmad Hidayatno
SEMS Research Highlights 2015: A New Strategy Development Model to Support FLNG Implementation in Indonesia
Posted by systems in Clean and Renewable Energy, Knowledge Area, News, Research Area, Research Highlights, Sustainable Industrial Policy, Technology Policy Transitions on 02/07/2015
Floating Liquefied Natural Gas (FLNG), a relatively new technology in LNG industry, appears as billion dollars attraction to uncover the massive proportion of stranded natural gas reserves. Apparently, one-third of the gas reserves in the world are located in offshore, which in many cases considered to be stranded. As the growing interest to exploit and trade all available gas reserves along with the opportunity to build the offshore LNG facilities, the FLNG gives an ideal solution. FLNG is a natural gas liquefaction and storage system which is placed directly above the gas source using technology that is installed in a ship. The entire value chain of the FLNG will be shorter than the LNG supply chain in general, since it omits the transportation of natural gas via pipeline to onshore plants.
Despite its huge positive potential impacts offered, FLNG construction in Indonesia comprises number of risks and opportunities. One of major risks in the preparation to implement FLNG technology in Indonesia is how to meet the requirements of the local content percentage. In 2013, Indonesia’s Ministry of Energy enacted a regulation of minimum local content for equipment used in the energy industry. However, the current state of local industry capacity still requires significant new development in terms of technical, engineering, and security.
A coordinated effort between relevant actors to develop the industry of FLNG development, especially for the topside structure, is also in-line with the new focus of the Government on Maritime Sector Development. Therefore, a proper multi-actor roadmap is needed to address the complexity as well as ensuring that the overall strategies can be fully understood and well implemented by all relevant parties. This would allow the government to minimize the risk of delays in the implementation and achievement of the targets.
Technology Roadmapping is a method that has been used extensively to support the development of certain types of technology. Since this research took an industrial development for FLNG implementation as a focus of the study, the roadmap is considered appropriate because it has been widely used as a planning tool in some ministries in Indonesia. However, there is a saying that goes “planning without action is futile, action without planning is fatal”. We found that a roadmap is not enough to become a planning tool for the project in this type and scale.
We proposed the integration of Technology Roadmapping and Hoshin Kanri Strategic Deployment Management. Both methods have a similarity in the importance of interactions between stakeholders to support the development and deployment of strategies and policies. Hoshin kanri is incorporated in the roadmap making to provide a clear accountability arrangement and review of the strategies with the existence of clear documentation from planning to review stage.
The proposed integration model comprises four stages process including planning, visioning, strategy and roadmap development, as well as implementation and review. In the end, the planning process would produce two main outputs that become guides in the implementation of strategies. First, a roadmap that describe the strategic plan required at a certain time period. Second, an x-matrix that translates those strategies into tactics and detailed process to achieve each result or target.
This research has managed to find a novel approach to the development of the strategy, which is conducted by integrating the approach of Technology Roadmapping and Hoshin Kanri method and serves them as a strategic planning tool. We are integrating both methods to make a more detail strategy plan that includes strategy development, deployment to all parties, and a system of periodic reviews. To this extent, the research is believed could provide a novel implication by integrating the strengths of the two methods to provide the strategic framework for industrial development in the national sector.
This research is conducted by Akhmad Hidayatno, Aziiz Sutrisno, and Wulan Maulidiah
Introductory SD Workshop on Modeling Fiscal Policy for Sustainable Development
SEMS in collaboration with PT Makara Mas (Holding Company of Universitas Indonesia) conducted an introductory system dynamics workshop on modeling sustainable development for Fiscal Policy Agency – Ministry of Finance, Government of Indonesia. The workshop was part of Low Carbon Support, provided by the United Kingdom (UK) for the Ministry of Finance, especially the Centre for Climate Change Financing and Multilateral Policy (PKPPIM) in the Fiscal Policy Agency. PKPPIM are tasked to recommend a low carbon fiscal policies especially starting from the national budget 2015. This is why they needed a more integrated modeling tool to be able to evaluate green fiscal policy impacts.
FPA has already a strong group of economic models that are based on IO Models, SAM, and CGE, however since the questions of green policy is multi-dimensions with multi-sectoral approach, they feel that they need to have a more adaptive model to answer these questions.
The workshop was conducted for 5 days in the 2nd week of February, ranging from the basics of systems thinking and system dynamics, group dynamics, simple model building and closed by discussion on future models development of a new “green fiscal policy” model.
Beer Game Simulation at Astra Honda Motor AHM
Posted by systems in Knowledge Area, Lean and Green Operations, News, Ports, Logistics and Supply Chain, Research Area, Workshop & Training on 12/09/2014
National Energy Council Workshop on SD
SEMS Laboratory is developing a model to evaluate the energy impact on land transportation strategy for the Dewan Energi Nasional (DEN – National Energy Council). The model is based on System Dynamics, therefore we kick off the model development by conducting an introductory one-day workshop on System Dynamics Modeling.
Our researcher, Aziiz Sutrisno, lead the workshop aims to give a foundation for the council’s expert to understand the SD “engine” of the model.